Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0287151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37816015

RESUMO

OBJECTIVE: Pt-Mal-LHRH is a newly synthesized chemotherapeutic agent that was designed to selectively target the luteinizing hormone-releasing hormone (LHRH) receptor expressed by triple negative breast cancer (TNBC). The aim of this study was to evaluate the therapeutic dosing, tumor reduction efficacy, and selective distribution of Pt-Mal-LHRH in-vivo. METHODS AND RESULTS: LHRH tissue expression levels in-vivo were investigated using western blotting and LHRH was found to be increased in reproductive tissues (mammary, ovary, uterus). Further, Pt-Mal-LHRH was found to have increased TNBC tumor tissue platinum accumulation compared to carboplatin by inductively coupled plasma mass spectrometry analysis. The platinum family, compound carboplatin, was selected for comparison due to its similar chemical structure and molar equivalent doses were evaluated. Moreover, in-vivo distribution data indicated selective targeting of Pt-Mal-LHRH by enhanced reproductive tissue accumulation compared to carboplatin. Further, TNBC tumor growth was found to be significantly attenuated by Pt-Mal-LHRH compared to carboplatin in both the 4T1 and MDA-MB-231 tumor models. There was a significant reduction in tumor volume in the 4T1 tumor across Pt-Mal-LHRH doses (2.5-20 mg/kg/wk) and in the MDA-MB-231 tumor at the dose of 10 mg/kg/wk in models conducted by an independent contract testing laboratory. CONCLUSION: Our data indicates Pt-Mal-LHRH is a targeting chemotherapeutic agent towards the LHRH receptor and reduces TNBC tumor growth in-vivo. This study supports drug conjugation design models using the LHRH hormone for chemotherapeutic delivery as Pt-Mal-LHRH was found to be a more selective and efficacious than carboplatin. Further examination of Pt-Mal-LHRH is warranted for its clinical use in TNBCs, along with, other reproductive cancers overexpressing the LHRH receptor.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Receptores LHRH , Neoplasias de Mama Triplo Negativas/patologia , Carboplatina/uso terapêutico , Platina/uso terapêutico , Hormônio Liberador de Gonadotropina , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico
2.
ACS Omega ; 6(3): 1846-1856, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521425

RESUMO

Currently, 186/188Re and 99mTc are widely used radionuclides for cancer detection and diagnosis. New advancements in modalities and targeting strategies of radiopharmaceuticals will provide an opportunity to enhance imagery and detection of smaller colonies of cancer cells while lowering false-positive diagnoses. To understand the chemistry of agents derived from fac-[99mTc(CO)3(H2O)3]+ species, the nonradioactive [Re(CO)3(H2O)3]+ analogue was used. We have designed and synthesized Re-Acdien-LHRH, Re-Acdien-peg-LHRH, and a radiolabeled 99mTc-Acdien-LHRH (rhenium- and technetium-luteinizing hormone-releasing hormone) conjugates using a tridentate linker to detect cancers overexpressing the LHRH receptor. Re-Acdien-LHRH and Re-Acdien-peg-LHRH were synthesized from non-PEGylated and PEGylated LHRH-Acdien, respectively. Cellular uptake of the compounds 99mTc-Acdien-LHRH, Re-Acdien-LHRH, and Re-Acdien-peg-LHRH was found to be significantly enhanced compared to that of untargeted 99mTc alone and unlabeled [Re(CO)3(H2O)3]+. In addition, the conjugate compounds showed no difference in cellular toxicity compared to untargeted 99mTc alone or unlabeled [Re(CO)3(H2O)3]+. Further, a competition assay using LHRH indicated selective targeting of Re-Acdien-peg-LHRH toward the LHRH receptor (p < 0.05) compared to that of [Re(CO)3(H2O)3]+ alone. Together, our data show the design paradigm and synthesis of targeting radionuclides using the LHRH peptide. Our data suggests that utilizing the LHRH peptide can lead to selective targeting and diagnosis of breast cancers expressing the LHRH receptor.

3.
Bioconjug Chem ; 28(2): 461-470, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27997127

RESUMO

A new targeting chemotherapeutic agent, Pt-Mal-LHRH, was synthesized by linking activated cisplatin to luteinizing hormone releasing hormone (LHRH). The compound's efficacy and selectivity toward 4T1 breast cancer cells were evaluated. Carboplatin was selected as the comparative platinum complex, since the Pt-Mal-LHRH malonate linker chelates platinum in a similar manner to carboplatin. Breast cancer and normal cell viability were analyzed by an MTT assay comparing Pt-Mal-LHRH with carboplatin. Cells were also treated with either Pt-Mal-LHRH or carboplatin to evaluate platinum uptake by ICP-MS and cell migration using an in vitro scratch-migration assay. Tumor volume and metastasis were evaluated using an in vivo 4T1 mouse tumor model. Mice were administered Pt-Mal-LHRH (carboplatin molar equivalent dosage) through ip injection and compared to those treated with carboplatin (5 (mg/kg)/week), no treatment, and LHRH plus carboplatin (unbound) controls. An MTT assay showed a reduction in cell viability (p < 0.01) in 4T1 and MDA-MB-231 breast cancer cells treated with Pt-Mal-LHRH compared to carboplatin. Pt-Mal-LHRH was confirmed to be cytotoxic by flow cytometry using a propidium iodide stain. Pt-Mal-LHRH displayed a 20-fold increase in 4T1 cellular uptake compared to carboplatin. There was a decrease (p < 0.0001) in 4T1 cell viability compared to 3T3 normal fibroblast cells. Treatment with Pt-Mal-LHRH also resulted in a significant decrease in cell-migration compared to carboplatin. In vivo testing found a significant reduction in tumor volume (p < 0.05) and metastatic tumor colonization in the lungs with Pt-Mal-LHRH compared to carboplatin. There was a slight decrease in lung weight and no difference in liver weight between treatment groups. Together, our data indicate that Pt-Mal-LHRH is a more potent and selective chemotherapeutic agent than untargeted carboplatin.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Cisplatino/uso terapêutico , Sistemas de Liberação de Medicamentos , Hormônio Liberador de Gonadotropina/uso terapêutico , Receptores LHRH/metabolismo , Células 3T3 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/química , Cisplatino/farmacocinética , Feminino , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/farmacocinética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/efeitos dos fármacos
4.
PLoS One ; 10(11): e0143277, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26588686

RESUMO

OBJECTIVES: Calcium independent group VIA phospholipase A2 (iPLA2ß) and Matrix Metalloproteinase-9 (MMP-9) are upregulated in many disease states; their involvement with cancer cell migration has been a recent subject for study. Further, the molecular mechanisms mediating nicotine-induced breast cancer cell progression have not been fully investigated. This study aims to investigate whether iPLA2ß mediates nicotine-induced breast cancer cell proliferation and migration through both in-vitro and in-vivo techniques. Subsequently, the ability of Bromoenol Lactone (BEL) to attenuate the severity of nicotine-induced breast cancer was examined. METHOD AND RESULTS: We found that BEL significantly attenuated both basal and nicotine-induced 4T1 breast cancer cell proliferation, via an MTT proliferation assay. Breast cancer cell migration was examined by both a scratch and transwell assay, in which, BEL was found to significantly decrease both basal and nicotine-induced migration. Additionally, nicotine-induced MMP-9 expression was found to be mediated in an iPLA2ß dependent manner. These results suggest that iPLA2ß plays a critical role in mediating both basal and nicotine-induced breast cancer cell proliferation and migration in-vitro. In an in-vivo mouse breast cancer model, BEL treatment was found to significantly reduce both basal (p<0.05) and nicotine-induced tumor growth (p<0.01). Immunohistochemical analysis showed BEL decreased nicotine-induced MMP-9, HIF-1alpha, and CD31 tumor tissue expression. Subsequently, BEL was observed to reduce nicotine-induced lung metastasis. CONCLUSION: The present study indicates that nicotine-induced migration is mediated by MMP-9 production in an iPLA2ß dependent manner. Our data suggests that BEL is a possible chemotherapeutic agent as it was found to reduce both nicotine-induced breast cancer tumor growth and lung metastasis.


Assuntos
Anticarcinógenos/farmacologia , Carcinógenos/antagonistas & inibidores , Neoplasias Pulmonares/prevenção & controle , Neoplasias Mamárias Experimentais/tratamento farmacológico , Naftalenos/farmacologia , Nicotina/antagonistas & inibidores , Pironas/farmacologia , Animais , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/toxicidade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...